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Abstract can have differing durations, preconditions may need to hold
In recent years, Graphplan style reachability analysis and  Over some or all of that duration, effects may take place at
mutual exclusion reasoning have been used in many high differing times, and exogenous events or conditions may oc-
performance planning systems. While numerous refinements  cur.
and extensions have been developed, the basic plan graph In 1999, Smith and Weld [27] generalized the Graphplan
structure and reasoning mechanisms used in these systems  methods for reachability and mutex reasoning to allow ac-
are tied to the very simple STRIPS model of action. tions to have differing durations. However, the representa-

In 1999, Smith and Weld generalized the Graphplan . : - .
methods for reachability and mutex reasoning to allow t|on_of actions used by_Smlth and Weld still made a number
of simplifying assumptions:

actions to have differing durations. However, the
representation of actions still has some severe limitations 1. All effects take place at the end of an action.

that prevent the use of these techniques for many real-world .. .
pIanr?ing systems. a y 2. Preconditions that are unaffected by an action hold

In this paper, we 1) develop a logical notion of throughout the duration of the action.
reachability independent of the particular representation and 3. Preconditions that are affected by an action are unde-
inference methods used in Graphplan, and 2) extend the fined throughout the duration of the action.

notions of reachability and mutual exclusion to more general 4. Th
notions of time and action. As it turns out, the general rules - There are no exogenous events.

for mutual exclusion reasoning take on a remarkably clean  Unfortunately, these restrictions are not reasonable for many
and simple form. However, practical instantiations of them real-world domains [14, 25]. Many actions have resource
turn out to be messy, and require that we make  consumption effects that occur at the beginning of the ac-

representation and reasoning choices. tion. Others have effects that are transient. In addition, some
. action preconditions need only hold at the beginning of an
Introduction action, or for a limited period. As an example that illustrates

In 1995, Blum and Furst introduced a method for reachabil- all of these, turning a spacecraft involves firing thrusters for
ity analysis in planning [2, 3]. The method involves incre- Periods at the beginning and end of the turn. As a result,
mental construction of a plan graph to provide information there are transient needs for various resources (valves, con-
about which propositions and actions are possible at eachtrollers), transient effects like vibration and heat that occur
time step. Since then, plan graph analysis has been a key parf€ar the beginning and end, and outright resource consump-
of several high performance planning systems such as IPPtion (fuel) that occurs near the beginning, and near the end.
[18], STAN [19], and Blackbox [16]. More recently, reach- Finally, exogenous events are crucial in many domains.
ability analysis has been used for another purpose — to helpFor example, in planning astronomical observations, celes-
compute more accurate heuristic distance estimates fortial objects are only above the horizon during certain time
guiding state-space search [4, 11, 24, 22] and guiding searchwindows, and they must not be occluded by other bright ob-
in partial-order planners [23]. jects.

Reachability analysis and mutual exclusion reasoning  While Smith and Weld's Temporal Graphplan (TGP)
have also been the subject of both efficiency improvements planner performs wel] the representation cannot be easily
[19, 6], and extensions to deal with things like limited forms extended to remove the above restrictions. In particular,
of uncertainty [26, 28], and resources [17]. Unfortunately, when exogenous events and/or transient effects are permit-
the basic plan graph structure and reasoning mechanisms aréed, reachability and mutual exclusion relationships hold
limited to the very simple STRIPS model of action. In over intervals of time. For example, the action of observing
STRIPS, one cannot talk about time — actions are considereda particular celestial object is only reachable during the in-
to be instantaneous, or at least of unit duration, precondi- tervals when the object is visible. A second problem with
tions must hold at the beginning of actions, and effects are
true in the_subsequen_t state. l\/_lany re_al world pla_nnlng p_rob- 1. Do [8] and Haslum [10] have reported that TGP remains com-
lems require a much richer notion of time and action; actions hetitive with more recent domain-independent temporal planners.




TGP is that the mutex rules are complex, and it has been dif-fects of the action may not all occur at the same time. In fact,
ficult to verify that they are sound. some of these effects mayto@nsient -that is, they are only

In this paper we extend the notions of reachability and temporarily true during the action. For example, an action
mutual exclusion reasoning to deal with the deficiencies in May use a resource (such as a piece of equipment) but re-
TGP. In particu|ar, we allow: 1) actions with genera| condi- lease it at the end. In this case the resource becomes unavail-
tions and effects, and 2) exogenous conditions. Note that ourable during the action, but becomes available again at the
objective here is not to develop a planning system that doesend of the action. To capture all of this, we model actions as
this reasoning, but rather to lay down a formal set of rules for having sets of conditions and effedfBhus, an action is rep-
doing this reasoning. Given such a set of rules, there arefesented as:

choices concerning how much reachability reasoning one 5  cong: P18y s DS,

actually wants to do, which in turn leads to different possi- off. e,y .. €8
bilities data structures, implementations, and search strate- ) men -
gies. where the times for conditions and effects are specified rel-

ative to the start of the action. More precisely, the semantics
of this representation is that if actiaris performed at time

t, and each condition,  holds over the intenvab, , then
each effecte, will hold over the intervake, . If the con-
ditions do not hold, then the outcome of the action is un-
known. We also require that:

In the next section we introduce notation for time and ac-
tions. Using this notation, we then develop the laws for sim-
ple reachability without mutual exclusion. We then develop
a very general but simple set of laws for mutual exclusion
reasoning. Finally, we discuss practical issues of implement-
ing these laws. In particular, we discuss some possible re-
strictions that one might want to impose on mutex reasoning 1. the conjunction of the conditions and effects must be

and discuss how these laws can be implemented using acon-  logically consistent (i.e. we cannot have inconsistent
straint network and generalized arc-consistency techniques. conditions, inconsistent effects, or an effect that
negates a proposition at a time when it is required by
The Basics the conditions.)
2. each effect must start at or after the beginning of the
Propositions, Time and Intervals action, that isg,” 20

To model many real world planning domains, we need to Using this action representation, a simple STRIPS action
talk about propositions (fluents) holding at particular points with preconditionsp,, ...,p, and effects, ...,e,  would be
in time, and over intervals of time. We will use the notation modelled as:

p;t to indicate that flueni holds at time. We will use the
notationp;i to indicate thatholds over the interval Thus:

pii = O(tO)pst

a cond: p;:0,...,pp,:0

eff: el ...,epl
. As a more complex example, consider an action that requires
We use the standard notatiqm, t,] (ty,1,) (1.1, thatp hold throughout the action, and requires a resource

[11, ;) to refer to closed, open, and partially open intervals o two time units before releasimgnd producing its final
respectively, and usé  amd  to refer to the left and right offecte. This would be modelled as:

endpoints of an interval. For any constattte notatiort + i
refers to the translated interval with left and right endpoints @~ ¢ond- p:[0.2]. 70
t+i ,andt+i" respectively. eff.  -r(0,2),ri20e2
For our purposes, we do not need a full set of interval re-  Note that there is a subtle difference between the effects:
lations, such as those defined by Allen [1]. However, we do {e;[0,2),~e;2 , €[0,2), and{e;0,-~e;2} . The first specifies
need the simple relationeet Two intervalameetf the right that e holds overr+[0,2), and ceases to hold after that. The
endpoint of the first is equal to the left endpoint of the sec- second says thatholds over-+[0,2) but may persist after that
ond, and the common endpoint is contained in at least one ofif nothing else interferes. The last specifies thadlds at,
the two intervals (they can't be both opén): does not hold at2, but leaves the status @&t intermediate
Meets(i, j) ~ =" 0 i'0i0j times subject to persistence or interference by other actions.
All three of these turn out to be useful, but the first is gener-
ally the most common.

For convenience we will usend(a; andeff(a;t) to refer
Actions to the conditions and effects for actioperformed at time
Thus, if the action a is described by:

Finally, we useillj to refer to the concatenation of two in-
tervals that meet.

In many real world domains, actions take time. In order for
an action to be successful, certain conditions may need to &  cond: p;:3;, ..., P8,
hold over part or all of the action. Furthermore, different ef- eff:  eeq, ... e 8,

2. Unlike the definition of Allen [1], our definition &feets is not 3. For simplicity, we have chosen not to include disjunctions in the
symmetric. We also permit the endpoint to be in both intervals. condition, or conditional effects. Both of these can be handled, but
Technically this would be considered overlap by Allen. complicate the axioms.
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we get: yet considering this interaction. To formalize reachability,
we will use two modal operatorgp;t) , angb;t) O(p;t) ,
Cond(a:t) = %013”51' Pt 5’5 means thap;tis logically possible- that isp;t is consistent
0 0 with the exogenous conditions(p;t) means Hds opti-
. . mistically achievable oreachable— that is, there is some
Eff(ait) = Qejit+&y, ..., e it +€ ] plan that could (optimistically) achievet. According to
o o these definitions, ib;t is reachable, it is possible. However
It is not particularly important how we define the duration of the converse is not truep:+can be logically possible, but not
an action, but in keeping with the usual intuitions, we will reachable, because the set of actions is not sufficiently rich
define it as being the difference between the end of the lastto achievep;t.

effect, and the start of the action. Thus: For convenience, we will allow amd  to apply to in-
+ tervals as well as single time points:
D(a;t) = max Ji
{Jj:e;jOEf(a;t)} O(p:i) =0(t O 1)0(p;t)

A(p;i) = DO(t O 1) A(p;t)

In general, modal logics tend to have nasty computational
properties, but the logic we will develop here is particularly
simple — we do not require any nesting of these modal oper-
ators, and we will not be allowing any quantification inside
of a modal operator.

Exogenous Conditions

In order to model more realistic planning problems, we need
to modelexogenous conditionBy an exogenous condition,
we mean any condition dictated by actions or events not un-
der the planner’s control. For a STRIPS planning problem,
the initial conditions are the only type of exogenous condi-
tions permitted. More generally, exogenous conditions can Exogenous Conditions
include such things as the intervals during which certain ce- : ) ,
lestial objects are visible, or the times at which resources be- 1ne first set of axioms we need are the exogenous condi-
come available. We can consider exogenous conditions astions. Thus:

being the effects of unconditional exogenous actions. For (Eff(X;0) F p;t) Fpit (1)
convenience, we will lump all exogenous conditions togeth- ¢ coyrse, the exogenous conditions are also both possible
er, and consider them as being the effects of a single uncon— 4 reachable:

ditional action x that occurs at time O:

X cond:
eff: xcl;él, ..., XC

p;i 0 O(psi) (2
5 p:i O A(p;i) ©)

n; n . . . .
Likewise, the negation of any exogenous condition cannot

where for initial conditions, the interval would be the time be either possible or reachable:

point 0. Thus, for a telescope observation problem, we might

have something like: p;i 0 =0(=p;i) 4
X cond: p;i 0 =A(=p;i) (5)
eff:  Telescope-parked;0 Finally, we need to be able to apply the closed world as-

sumption to the exogenous conditions, inferring that any-
thing that is not explicitly prohibited by the initial conditions
Visible(C842) ;[0217, 0330] is possible:

(Eff(X;0) f=pit) F (pit) (6)

For purposes of this paper, we have chosen to consider only, :

L -~ YPersistence
unconditional exogenous events. More generally, we might daf o f habili hat
want to consideconditionalexogenous events — i.e., events _Next,hwe nl(lae airame ?X'O?]‘ o.rf reachabiiity — that is, 2”&"'
that occur only if the specified conditions are met. As it turns '0M that allows us to inter that If a proposition Is reachable
out, this extension requires a few additional axioms, but is &t @ given time then it is reachable later on, just by allowing

otherwise not particularly difficult. We will elaborate on this it,t.o p‘?rS‘,St- However, we need to make sure that the propo-
later. sition isn’'t forced to become false by an exogenous condi-

tion. To do this, we require that the proposition also be
Simple Reachability possible. A first version of this axiom is:

We first consider a very simple notion of reachability; we re- A(p"? Hmeets(/. )0} o(p3/) 1 A(,p’l 1 )
gard a proposition as beingachableat time: if there is Here, the intervalsand; can be either open or closed — all
some action that can achieve it at tigrend each of the con- ~ We require is that they meet. Most commoniyill be a sin-
ditions for the action is reachable at/over the specified time 9!€ time point, and; an open intervak), wherer is either
or interval. This is a very optimistic notion of reachability . Of the nexttime point at which the propositidrecomes
because even though two conditions for an action might be false because of exogenous conditions.

possible, they might be mutually exclusive, and we are not

Sunset;0023
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Unfortunately, this axiom is a bit too optimistic — it al- Conjunctive Optimism

lows us to persist transient effects of an action indefinitely Ajthough Axiom (10) is technically correct, it is difficult to
into the future. Normally this is ok, but if an exogenous con- saisfy. The trouble is the premiseond(a;) . Typically, the
dition blocks a condition for that action at some time in the ¢ondition for an action will be a conjunction of propositions,
future, then the transient effect should not persist indefinite- 54 e need to be able to prove that this conjunction is reach-

ly. For example, suppose that we have a single asti@v- able in order to be able to use the axiom. Unfortunately, we
ing conditionp0, and requiring a resouroefor two time cannot usually do this, because our axioms only allow us to
units before releasingand producing its final effeet This infer that individual effects are possible, (or at best, conjunc-
would be modelled as: tions of effects resulting from the same action). Deciding
a cond: p;0,r;0 whether a conjunction of propositions is reachable is a plan-

eff.  -r;(0,2),r;2, ;2 8) ning problem, so there is little hope that we can do it effi-

ciently. Instead, we will be extremely optimistic, and
' suppose that if the individual propositions are reachable,
then the conjunction is reachable:

Now suppose that the conditions p and r are initially true
but p becomes false at time 3. As a resau#t only reachable
up until time 3. The effect is first reachable at time 2, but
can persist indefinitely. Howeves; can only occur during A(py;ip) O..0 Alp i)
the action, and should therefore only be reachable in the in- O Alp.ci. 0.0 pi 13
terval (0,5). However, Axiom (7) would allow us to persist (Pyify Bl Ppily) (13)
the reachability of.r indefinitely into the future. In the next section we will revise this axiom to require that

The way we fix this problem is to specialize axiom (7) to the propositions are natutually exclusive
only allow action effects to persist if they are not later over-

ridden by the action. Formally, we defipeto be apersis- An Example
tenteffectfor an action if there is no other effegtsuch that To see how the axioms for simple reachability work, we re-
g is inconsistent with p anands after? turn to our example action shown in equation (8). This action

has a conditiom;0, and requires a resouredor two time
units before releasing it and producing the eféegVe sup-
pose that the conditionsandr are initially true, bup be-
comes false at time 3. We therefore have the exogenous

PersistEff(a;t) = Ep;il] Eff(a;t) :
g

Hh0g:j DEff(a;t) : (q:j 0 =p;s) Dsﬂ%é conditions:
Using this definition, we can restrict axiom (7) by requiring X cond:
thatp;t be a persistent effect; eff.  p0,r.0,-p:3
. . Using the axioms developed above, we can now derive
Ca, t: Aait) Op;i O PersistEff(a;) ©) reachability for the propositions r, -, e, and the actioe:
- Dmeeté(i, )0 o(p;j) 0 A_(;_J;illj) _ p:0, 10 ,-p:3 x:0, (1)
This allows us to persist the reachability of persistent effects,
but not transient ones. - A(p:0) , A(r:0) 1,3)

. 3. o(pi(0,3)) , 0(ri(0, w)) 1, (6-CWA)
Actions 4 _ _ 2 3. (9-Persist
Finally, we need axioms that govern when actions are reach- - Alpil0.3)), A(ri{0 <)) 3, (9-Persist)
able, and what their effects will be. An action is reachable if 5. Aa0,3)) 4, (10)
its conditions are reachable and the effects are not prevented: g so2 5 a(=r:(0,5)) 5, (12)
Conversely, if an action is reachable, both its conditions and .
its effects must be reachable: 8. Aeil2,»)) 6,7, (9-Persist)

In this proof the numbers at right refer to the previous lines
of the proof, and the axioms that justify the step. A graphical
M@ O(aitd pit) O A(p;t') (12) depiction of the final reachability intervals is shown in Fig-
ure 1.

Thus, we can see that because the aeti®only possible
4. Since the effects of an action must be consistent, the intérvals up until time 3,-r only persists up until time 5, leutan
and; will actually be disjoint. persist indefinitely. Of course, if there were an exogenous ef-
5. Technically, equation (11) is not valid because it is possible to fect that forcec to be false at some time in the future, then
initiate an actiorat even though some of its later conditions fail to  the persistence af would also be curtailed by axioms (6)
hold. According to our semantics, the outcome of such an action is gng (9). Ifp later became true again, we would be able to ap-
undefined. However, for our purposes, we will assume that no ply actiona again, so the actios and propositions and-r

planner would include the actiomt without guaranteeing  q,|q hecome reachable during additional intervals.
Cond(a;f). As a result, we can get away with this assumption.

a;t 0 Cond(a;t) OEff(a;t) (11)
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ways. As a result, it helps to define mutual exclusion be-

_L tween actions and propositions, as well as between pairs of

S - B actions and pairs of propositions. In addition, because of ex-

L r ) ogenous events, and transient action effects, mutual exclu-
C e N sion relationships can come and go repeat%élbl.it turns

, Cr \ ’ out, the general rules for mutual exclusion reasoning take on

' ’ a remarkably clean and simple form. However, practical in-

I t t t t t i stantiations of them turn out to be more complex.

o 1 2 3 4 5 @

Figure 1: Reachability intervals for a simple example. Logical mutex

The style of reasoning that we have done here closely If a set of propositions and or actions are logically inconsis-
mimics what goes on in Graphplan — we started at time 0, €nt then they are mutex. Formally:
and worked forward in time, adding new actions and propo- (W 0.0 W) O MWy, ... y)
sitions as they became reachable. However, we are not lim-

(15)

ited to a strict temporal progression — we can draw

conclusions in any order, as long as they are sanctioned by

the axioms.

Mutual Exclusion

Much of the power of Graphplan comes from the use of bi-
nary mutual exclusion reasoning, which rules out many
combinations of incompatible actions and propositions.
From the point of view of our logic, proving that two or more
actions or propositions are mutually exclusive amounts to
proving that the conjunction is not reachable. We will use an
n-ary modal operator

M(pyity, s Ppity)

to indicate that the propositions;t,, ..., p,;t,  are mutually
exclusive. We note that the arguments/tare commutative
and associative. As before we will extend the notation to
work on intervals:

M(pqiigs s Ppii )

O O(ty Oigeee 8y 0ip) M(Pyity, oo Ppit,)

Using mutual exclusion, we revise the conjunctive opti-
mism axiom (13) to be:

H(py3iy) 0.0 Ap i BO~M(Pysiy, oo pii )

0 A(pqiig 0.0 ppiiy)

Our job then, is to write a set of axioms that allows us to infer
when propositions are mutually exclusive. This will restrict
what we can infer with axiom (14), and hence restrict our
ability to infer when actions are reachable using axiom (10).
As in Graphplan, our mutual exclusion laws will be incom-
plete — we are looking for a set of laws that are computation-
ally effective so that the reasoning can be done in
polynomial time. As a result, we will restrict our attention to
binary mutual exclusion, noting that if any set of proposi-
tions is mutually exclusive, then any superset is mutually ex-
clusive:

M(s)OsOs' O M(s")
As in the work on Temporal Graphplan [27], the fact that

(14

where they, can be either propositigns or actionsat.
This rule is the seed that allows us to infer a number of sim-
ple logical mutex relationships. For exampley jf= p;t and

¥, =-p;t we get the obvious mutex rule:

M(p;t, - p;t)
which forms the basis for Graphplan mutual exclusion rea-
soning. Similarly, ify, =p;t , and,=a;t , angrhas a pre-
condition or effectp;t, then the action and proposition are
mutex (sincga;t O -p;t) ):

(a;t' 0 =p;t) O M(p;t, a;t)
Going a step further, if we have two actions with logically

inconsistent preconditions or effects this rule allows us to
conclude that the actions are mutex:

(ag;t; 0 pit) O(ayit, O =pit) O M(agsty, ayity)

Although we will not illustrate it here, rule (15) also admits
the possibility of inferring additional logical mutex from do-
main axioms that might be available (e.g. an object cannot
be in two places at once). It can also be used to derive logical
mutex between actions that have more general resource con-
flicts.

All of these logical mutex relationships are the seeds that
serve to drive the remainder of the mutex reasoning. As we
will see below, they allow us to infer additional mutex rela-
tionships between actions and propositions, pairs of actions,
and ultimately pairs of propositions.

Implication Mutex

Our second mutex rule is also remarkably simple, but more
subtle. Letr =r,0r, be a set of propositions/actions that
are mutex. Suppose that a second set of propositions/actions
Y impliesr, . Thenthe setor, is also mutex. Formally:

M Or,)0Wwor,) 0 mwor,) (16)
Again, the set elements can be either propositions or actions.
For binary mutex, this reduces to the formula:

MWy, Wy) O(Ww3 0 wy) O Mg, w5)

As an example of the use of this formula, supposeuthat
andy, are mutex propositions, ang is an action that has

we are dealing with a much more general notion of time g |n Graphplan and even TGP, once a mutex relationship disap-
means that actions and propositions can overlap in arbitrary pears, it cannot reappear at a later time.
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@, as a precondition. Since the action implies its precondi-
tions, this rule allows us to infer that the action is mutex with
¢, . Going one step further, if, is an action, then this rule
allows us to conclude that the actians  agd
Thus, this single rule allows us to move from proposition/
proposition mutex to proposition/action mutex, to action/ac-
tion mutex.

To see how this works, consider two simple STRIPS ac-
tions: a, having preconditiom and effecte, andb, having
preconditiong and effectt Suppose that both and g are

reachable at time 1, but that they are mutex as depicted

graphically in Figure 2. We can therefore apply the above

p;l a;l e;2
q;1 b;1 f;2

Figure 2: A simple STRIPS example with p and q mutex at
time 1.

rule to conclude thad;1 is mutex withg;1 andb;1 is mutex
with p;1. Having done this, we can apply the rule again to
conclude thag;1 is mutex withb;1 as shown in Figure 3.

p;1 a;l
g;1 b;1
Figure 3: Mutex derived by the implication rule

While axiom (16) works fine for a discrete STRIPS mod-
el of time, more generally, we do not want to do the mutex
reasoning for each individual time point. Instead, we would
like to do it for large intervals of time. So suppose we start

e;2

;2

out with two propositions/actiong,  arg being mutex
over the intervals, and ,and;t;0 ¢,;t; . Thento find
the time interval over which;  will be mutex wigh:i, ,we
need to gather up all the timeg ~ where  impligs  at

some pointini; . Formally:

. . .0 .
M(¢1;/1,¢2;/2) O is :E;ts:¢3;t3D g:(tl[]/l) o) 1;tﬂ%

O M(¢3:iz 05:i5) an
To illustrate how this works, we extend our example from
Figure 2 to continuous time, and imagine thandgq are
produced by mutually exclusive actions of different dura-
tion. In particular, suppose thabver [1,3) is mutually ex-
clusive withg over [2,3). Using (17) we could conclude that:
M(aj[1,3),q;[2,3))
M(b;[2,3), pi[1,3))
M(aj[1,3), bi[2,3))
as illustrated in Figure 4.

Explanatory Mutex

Our final rule is somewhat subtle and tricky. As a result, we
will only show the binary version here, although it too can

are mutex.

p;[l,3)><a;[l,3) e
q;[2,3) b;[2,3) f

Figure 4: Implication mutex for intervals

be generalized to n-ary mutex. This rule is, in effect, the ex-
planatory version of the previous rule. Basically, it says that
if all ways of provingy; are mutex withy, theny,; andy,

are mutex:

Eﬂwggwgm Y1) O M(yy, wzﬁm MYy, ¥y) (18)
The tricky part is the phrase “all ways of proving”. For our
purposes, we are interested in the case whgiga propo-
sition p;t andps is a way of achieving;t. We could achieve
p;t by performing an actioa'that hag;t as an effect, but we
could also potentially perform the actiarat some earlier
time and allowp to persist. Thus, we need to account for all
of these possibilities. Furthermore,pifis achieved earlier
and allowed to persist, that “means of achieving” could be
mutex withy, for one of two reasons: either is mutex
with ,, or the persistence pfis mutex withys.

To formalize this, we define tleipportof a proposition
as being the union of tltérect supportand thendirect sup-
port for the proposition:

Supp(pit) = DirSupp(p:t) O IndSupp(p;)
The direct support is simply the set of actions that can direct-
ly achieve the proposition:

DirSupp(pif) = it : Aast) O(Eff(ait) O pit)]
O O

The indirect support is a set of miniature plans for achieving
the proposition, each consisting of an actigithat achieves
the proposition before and the persistence of the proposi-
tion until . As with persistence axiom (9), we need to be
careful not to rely on the persistence of transient effects:

IndSupp(p;t) = Ea;t' Ops(t", t]:
0

A(a;t') Ot" <t (PersistEff(a;t’) O p;t"D O(p;(t", t])%
O

Using this concept of support, we can restate our more spe-
cific version of (18) as:

HHo 0 Supp(pit) : M(o, W O M(pit, )

For the case of direct suppastjs just an actior;t, SO we
can directly evaluater(o, ) . However, for indirect effects,
o is a conjunction of an actiarr and a persistenge. If ei-
ther of these is mutex with, then the conjunction is mutex
with . More generally:

M(crl, )] DM(O’Z, Y) O M(cr1 oW )

(19)

As a result, we expand axiom (19) into the more useful form:
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S]G O DirSupp(p;t) : M(o, LlJ)H

DB](C( Om) O IndSupp(p;t) : M(a, ) OM(T, w)%

0 Mpitw) (20)

To illustrate how this axiom works, we return to the sim-
ple example in Figure 3. From implication mutex we already
know thata;1 andb;1 are mutex. Effect;2 has only the direct
supporta;1. As a result, we can use the above rule to con-
clude thatp;1 is mutex withe;2. Similarly, we can conclude
that a;1 is mutex withr.2. Finally, using these facts we can
conclude thag;2 is mutex withr:2 as shown in Figure 5.

(<))

Figure 5: Mutex derived by the implication rule

As with Implication Mutex, we would like to be able to
apply (19) and (20) to intervals rather than just single time
points. If we generalize the notion of support to intervals, we
can state the more general version as:

Ho OSupp(piiy) - M(0, diip)] O M(piiy, diip)

As we did with (19) we could expand out to the longer but
more useful form containing direct and indirect support.

1)

Practical Matters

Limiting mutex reasoning

Although the above mutex theory is very general, it can pro-
duce huge numbers of mutex conclusions, many of which
would not be very useful. In order to make the reasoning
practical, we need to constrain the application of these axi-

oms so that only the most useful mutex relationships are de-

rived.

The first, and most obvious way of limiting the mutex
rules is to only apply them to propositions and actions that
are actually reachable. If something isn’t reachable at a giv-
en time, it is mutex with everything else, so there is no point
in trying to derive additional mutex relationships.

While this certainly helps, it is not enough. The trouble is
that our laws allow us to conclude mutual exclusion relation-
ships for propositions and actions at wildly different times.
For example, we might be able to conclude thais mutu-
ally exclusive withg;238. While this fact could conceivably
be useful, it is extremely unlikely. To understand why, and
what to do about it, we need to consider how mutex are used.

7. In practice, ifp is mutex withp;t. then we do not need to check
actions that suppopt prior tot (since the persistence pfwill be
mutex with ). Thus we only need to consider support foat
timest afterp is mutex withy. This involves moving the check for
persistence mutex back into the definition of independent support.
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Fundamentally, we use mutex to decide whether or not
the conditions for actions are reachable, and hence whether
the actions themselves are reachable (axioms (14) and (10)).
Thus, the mutex relations that ultimately matter are the prop-
osition/proposition mutex between conditions for an action.
With simple STRIPS actions, this means we are concerned
with propositions being mutex at exactly the same time. Un-
fortunately, with more general conditions we can't do this —
an action may requingt, andg;t++1. Thus, we'd need to know
whetherm(p;t, g;t+1) in order to decide whether the action
was reachable. However, we do not care about
M(p;t, g;t+5) . Suppose we define tilseparationfor a pair
of conditions in an action as the distance between the inter-
vals over which the conditions are required to hold. For our
example above, the condition separation was 1. We then take
the maximum over all conditions for an action, and the max-
imum over all actions. This tells us the maximum range of
times that we ultimately care about for proposition/proposi-
tion mutex relationships. In the extreme case where all pre-
conditions of actions are required at the start of the action,
we only need to consider whether propositions are mutex at
the same time.

We can draw similar conclusions concerning action/ac-
tion and action/proposition mutex, although in the latter
case, the ranges are somewhat wider. This is because we are
considering actions that support propositions, which means
the actions start before their effects. Still, limiting the appli-
cation of the axioms to such time ranges drastically reduces
the number of mutex conclusions, but with the potential
price of missing a few useful mutex relationships. For tem-
poral planning, this tradeoff needs to be carefully investigat-
ed.

Constraint-based reachability reasoning

We now turn our attention to the issue of finding an effective
way to calculate reachability information. For this, we turn
to constraint reasoning, which is an effective foundation for
reasoning about temporal planning problems. The con-
straint-based reachability reasoning tracks variables that de-
scribe reachability, and enforces constraints that eliminate
times where actions or propositions are not reachable.

The approach is motivated by the interval representation
used for temporal reasoning in various planning systems. In
simple temporal network propagation [7], event time do-
mains are described as intervals, and the algorithm is used to
infer distance relations between events in plans.

The basic idea appears similar to temporal networks; for
each action and proposition, we have a variable representing
when it is reachable, and constraints that relate action and
proposition reachability. However, this reachability problem
does not map to a classical temporal constraint satisfaction
problem. This is because action reachability requires neces-
sary conditions to extend over periods of time, so there is no
notion of a satisfying assignment to those variables. We
therefore turn to a more general class of constraint reasoning
problems, where the variables are linked by elimination pro-
cedures [12], that specify when intervals can be eliminated
from the domains. The result is a network where reachability



can be determined effectively by constraint propagation, but changed. There are two circumstances where we actually
there is no notion of a solution to the network. Different con- need to apply this rule:
tsé:]agnt p(r:c;%agt?gonam?itgg dsibsucrhoaz gag[re]er?rl:ez:ed ?(;gecgggls' 1. when a reachability interval has been eliminated from
Y, Pp propag P v, (using one of the earlier elimination rules).
constraints. A very simple propagation method is to apply p o o
the set of elimination procedures to quiescence. 2. when a reachability interval has been eliminated for an
action — in this case, the above rule must be applied to

Let 7 be the set of possible times, which may be continu- all effects of that action.

ous and infinite. Typicallyr will be a sub-interval of the in- L L

tegers or the real numbers. For each actione define a To see how the application of the elimination rule works,
variablev, , and for each propositipywe define a variable ~ We again look at the earlier example. Initially, the following
v, . The initial domain of each variablerisand the intended ~ intervals have been eliminated:

semantics are that the variables represent the times at which -p:0, p:3, -r0, e0

an action or proposition is reachable. Based on this, the action condition reachability rules only al-
The simplest reachability procedure enforces that if a flu- low us to eliminatea:3

ent is not possible, it is not reachable. This gives rise to the A : . !
S . s . pplying the persistence rule te;3 , we get that no
following intervals being eliminated for each variablg reachable action establishesormula (23) therefore allows
{iz=0(ps us to eliminate the intervad, ») . Applying the persistence
The action reachability axioms are relatively straightfor- rule to other eliminated intervals allows us to eliminate:
ward as well. Let be an action with a condition or effect

p;5. If pis not reachable within an interved,y] , then the ~pi0.3)
action is not reachable at those times that regude true €(0.2)
in [x, y] ; specifically,a is not reachable in the interval: Now that more intervals have been eliminatedsfdhe
N _ application of the action condition reachability rules allows
[x-8.,y-8]. (22) [3,«) to be eliminated frony,,

Enforcing the persistence axiom is more involved. The Finally, the intervalo has been eliminated from_,
basic idea is that an interved,y] ~ wheres not reachable  Since the effectr;(0,2)  is not persistent, Formula (24) eval-
can be extended up to the point where an action can achievgates to[o, »)-(0,5) . This allows us to eliminate « )

p Or an exogenous event establishes other words, we can  from v_ . Note that the result is the same as applying the
eliminate the interval: logical axioms to determine when actions and propositions
may be reachable.
y.mingy >y 030, Dp:fDEff(a:t)% (23) . . .
0 Constraint-based mutual exclusion reasoning

Note that in computing the upper bound on this interval, we The above formulation does not include mutual exclusion
do not need to look beyond the next tigr(@)”owing y) at reasoning. TO_ extend the corjstralnt reasoning to |dent|fy
which p is already known to be not reachable. Thus, we can mutual exclusions, we add variables that correspond to pairs

confine our search for actions that achigte the interval ~ of propositions/actions, each of which represents the set of
ly, 2] time pairs when the action/proposition in question are not

If all action effects were persistent, the above rule would Proven to be mutually exclusive.
be sufficient. However, with transient effects we can contin-  For any pair of propositions and/or actions,,y,) , we
ue the elimination beyond the transient effect (if the tran- define a variables(y,, y,) that takes its values from the set
sient effect ends before a persistent effect becomes T x T . The intended semantics is that the variable represents
possible). To do this, we compute the above interval consid- time pairs where the two elements are not mutually exclu-
ering only persistent action effects, and then subtract out thesive. In other words, each variable is the inverse of the set of

subintervals in which the transient effects are reachable:  timepoints where the two elements are mutually exclusive.
Eliminating a pair of timegt,,t,) from a variable thus indi-

O = _ _ cates thaty, being true at time is mutually exclusive
y.mingy >y:pi Of0v, Opy0 PerS'StEﬁ(a't)%} with w, being true at time,

As in our approach to eliminating values to determine
reachability, we use special-purpose elimination procedures
to do the work. Each procedure implements a rule that deter-
The result is a set of intervals that can be eliminated from Mines a set of mutual exclusion relations and eliminates a set
v, . To make this elimination more efficient, we can confine ©f ime pairs. The rules are applied in combination by a suit-
our consideration of transient effects to those that are reach-2PI€ consistency achievement method.
able in the interval we are subtracting from. But more impor- ~ The elimination rules are based directly on the logical
tantly, we want to limit the application of this rule to those Mmutual exclusion rules above. Rather than repeat the logical
situations where we know that something relevant has formulations, we will describe specific instances that are

- Ely % Ov, O TransientEff(a;i) O p;j% (24)
]
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based directly on action definitions. Although we do not
show it here, domain axioms, inferred relations, and other
information can easily be cast as elimination rules as well.

Many of the rules can be used to eliminate multiple time
pairs at a time. In particular, the rules allow us to derive that
one interval is mutually exclusive with another interval. In
terms of elimination, this corresponds to removing a region
that is defined by the cross-product of the interval values.
For two intervals[x,y] an¢lab] we will refer to the cross-
product region agx,y] x[a,b]

Enforcing the logical rules is straightforward. Starting
with a simple proposition-proposition case, we find that for
any propositionp and time , the region x[1] can be
eliminated fromm(p, - p)

For the action-proposition case, consider the rule based
on actions implying their conditions and effects. ket be an
action with condition or effech;5 . For any time , the re-
gion[f] x[t+5,t+ 5] can be eliminated fromi(a, - p)

Finally, for the action-action case, we again look at the
implications relating actions and conditions and effects. Let
a be an action with condition or effees  ,and some oth-
er action with condition or effectp;e . For any time , the
region [ x[t+3 — e.t+ 8—¢] can be removed from
M(a, b) . (This is a diagonal swath through the space.)

Turning our attention to implication mutex rules, we find
that they can take many forms, depending on where propo-

B, =

[] 5+t
tOA;
Now let B = []B,; . If there is an interval of the forpy, z]
not within 8 , wherez>y , then the region z] x [u, w]
be eliminated fromm(e, f)

Next, we look at the transient case. For e@che;s ) ,
let c; be the set of times whegsean be made true as an ef-
fect of a, and persistence, without mutual exclusion with
over[u,w] . To be more exact, let= m e.n(d be the min-
imal time, greater tham , such that z] xu, w] is not in

M(e, f) , if such an interval exists, and otherwise. Then:

can

c,= 0O

_ Ox +
[DAp_[ép’ *hMee, g, * IE}

Now, let c=[c;. For any interval[t,sjocOB ,
[t,s] x[u,w] can be eliminated fromw (e, f)

The principal reason for doing mutual exclusion reason-
ing is to allow us to conclude that certain combinations of
action conditions are not reachable, and therefore that the
actions themselves are not reachable. We can do this is sev-
eral ways. The simplest way is to extend Rule (22) to elimi-
nate the interval:

[Xx-8,y-8]n[u—¢€,w—e]

whena has conditiong:3 ang;e , and, y] x[u, w]
been eliminated fromv(p, q)

has

sitions and actions appear. Let us therefore look at one spe-

cific variation, where proposition mutex information is used

to infer an action-proposition mutex, and describe the corre-
sponding elimination rule. Let and be propositions, and
a an action with condition or effegts . Lptu] x[v,w] be

a region that has been eliminated framip, q) . The region
[t-3,u—-51x[v,w] can then be eliminated fromi(a, g)

The elimination rules that enforce the explanatory mutex
rule are the trickiest ones to specify. This is in part because
those rules are non-binary, involving more than two vari-
ables. Again, the elimination rules mirror variations of the
general rule, so we will look at a specific version as an ex-
ample.

Let e andf be propositions ang, y] x [u, w] a region
that has been eliminated from M(e, f) Let
(a5, €3,), ... (a,, :3;) be an enumeration of all action-effect
pairs that achieve e Furthermore, let
(ap, €8, ). (a, €3, ) be the_: subset of action-effect
pairs that establisk ' as a persistent effect.

The explanatory mutex axiom allows us to conclude that
thee andfmutex area can be extended, either because
not be established with any action that is not mutex with in
the time interval in question, or any establishment is tran-
sient and cannot persist into the future.

First, we look at the simpler case, where cannot be es-
tablished. For eacty; e;3,) ,l@t  be the set of times where
a; is not mutually exclusive withi;fu,w] . In other words,
the subset ofm(a, f)  thatincludes w] for . Thendet
be the times where;;t  could establish , witha, . In
other words:
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can-

Other Issues

Exogenous events

For purposes of this paper we assumed that exogenous
events or actions were not conditional in nature. As a result,
we lumped all of the exogenous effects together into a single
action with no conditions. It is not too difficult to extend our
theory to allow general exogenous events. Initially, we start
with the setx of all effects from unconditional exogenous
actions. In order for an exogenous event to take place, its
conditions must be satisfied. Thus, any exogenous event
whose conditions are satisfieddmvill also take place, so its
effects must be added xoWe continue in this way until we
obtain the closure of all exogenous conditions. The remain-
ing exogenous actions may or may not occur. However, if
their conditions ever become true, they will definitely occur.
As a result, we need to treat them like domain axioms. In
other words, iftis a conditional exogenous event, we need
to add the axioms:

Cond(x;t) O x;t OEff(x;t)

The problem therefore reduces to one of handling domain
axioms, which the theory already handles.

Conclusions

In this paper, we extended reachability and mutual exclusion
reasoning to apply to a much richer notion of action and
time. In doing this, we provided a formalization of these no-
tions that is independent of any particular planning frame-
work. Surprisingly, the rules for mutual exclusion reasoning



turn out to be simpler and more elegant than we expected,12
particularly given the complexity of the rules for Temporal
Graphplan developed by Smith and Weld [27].

There are still a number of issues involved in making this 13
reasoning practical for temporal planning systems. Restrict-
ing the intervals over which the mutex rules apply seems
critical, but there are tradeoffs in the veracity of the resulting
mutex reasoning. Efficient interval representation and rea- 14
soning is also crucial. Superficially, the problem of deter-
mining reachability looks like it could be cast as a constraint
satisfaction problem. However, as we've discussed above,
the constraints are complex elimination procedures, and it is
not yet clear whether this approach will be computationally
effective.

We are continuing to work towards a CSP implementa-
tion within the Europa planning system [13, 14] and hope to
apply these techniques to real problems involving spacecraft 17
and rovers.
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